Attachment of Vibrio alginolyticus to glass surfaces is dependent on swimming speed.

نویسندگان

  • K Kogure
  • E Ikemoto
  • H Morisaki
چکیده

The attachment of Vibrio alginolyticus to glass surfaces was investigated with special reference to the swimming speed due to the polar flagellum. This bacterium has two types of flagella, i.e., one polar flagellum and numerous lateral flagella. The mutant YM4, which possesses only the polar flagellum, showed much faster attachment than the mutant YM18, which does not possess flagella, indicating that the polar flagellum plays an important role. The attachment of YM4 was dependent on Na+ concentration and was specifically inhibited by amiloride, an inhibitor of polar flagellum rotation. These results are quite similar to those for swimming speed obtained under the same conditions. Observations with other mutants showed that chemotaxis is not critical and that the flagellum does not act as an appendage for attachment. From these results, it is concluded that the attachment of V. alginolyticus to glass surfaces is dependent on swimming speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species.

The bacterial flagellar motor is an elaborate molecular machine that converts ion-motive force into mechanical force (rotation). One of its remarkable features is its swift switching of the rotational direction or speed upon binding of the response regulator phospho-CheY, which causes the changes in swimming that achieve chemotaxis. Vibrio alginolyticus has dual flagellar systems: the Na(+)-dri...

متن کامل

Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus.

By using mutants of Vibrio alginolyticus with only a polar flagellum (Pof+ Laf-) or only lateral flagella (Pof- Laf+), we examined the relationship between swimming speed and the viscosity of the medium for each flagellar system. Pof+ Laf- cells could not swim in the high-viscosity environment (ca. 200 cP) in which Pof- Laf+ cells swam at 20 microns/s. The Pof- Laf+ cells swam at about 20 micro...

متن کامل

Implications of three-step swimming patterns in bacterial chemotaxis.

We recently found that marine bacteria Vibrio alginolyticus execute a cyclic three-step (run-reverse-flick) motility pattern that is distinctively different from the two-step (run-tumble) pattern of Escherichia coli. How this novel, to our knowledge, swimming pattern is regulated by cells of V. alginolyticus is not currently known, but its significance for bacterial chemotaxis is self-evident a...

متن کامل

Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging

Bacterial flagella are extracellular filaments that drive swimming in bacteria. During motor assembly, flagellins are transported unfolded through the central channel in the flagellum to the growing tip. Here, we applied in vivo fluorescent imaging to monitor in real time the Vibrio alginolyticus polar flagella growth. The flagellar growth rate is found to be highly length-dependent. Initially, the fla...

متن کامل

Adhesive properties of environmental Vibrio alginolyticus strains to biotic and abiotic surfaces.

The ability of Vibrio alginolyticus strains isolated from a bathing and fishing area (Khenis, Centre of Tunisia) to adhere to both biotic and abiotic surfaces was evaluated in the present work. The biochemical, physiological and enzymatic activities of all strains was also investigated. Three morphotypes of V. alginolyticus were obtained on Congo red agar and only 14 strains produced black colo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 4  شماره 

صفحات  -

تاریخ انتشار 1998